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We report on an analysis of a well known three-pulse sequence for generating and detecting spin I = 1
quadrupolar order when various pulse errors are taken into account. In the situation of a single quadru-
polar frequency, such as the case found in a single crystal, we studied the potential leakage of single and/
or double quantum coherence when a pulse flip error, finite pulse width effect, RF transient or a reso-
nance offset is present. Our analysis demonstrates that the four-step phase cycling scheme studied is
robust in suppressing unwanted double and single quantum coherence as well as Zeeman order that arise
from the experimental artifacts, allowing for an unbiased measurement of the quadrupolar alignment
relaxation time, T1Q. This work also reports on distortions in quadrupolar alignment echo spectra in
the presence of experimental artifacts in the situation of a powdered sample, by simulation. Using our
simulation tool, it is demonstrated that the spectral distortions associated with the pulse artifacts may
be minimized, to some extent, by optimally choosing the time between the first two pulses. We highlight
experimental results acquired on perdeuterated hexamethylbenzene and polyethylene that demonstrate
the efficacy of the phase cycling scheme for suppressing unwanted quantum coherence when measuring
T1Q. It is suggested that one employ two separate pulse sequences when measuring T1Q to properly ana-
lyze the short time behavior of quadrupolar alignment relaxation data.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Deuteron quadrupolar alignment echo spectroscopy is a power-
ful tool for probing molecular motions with relaxation times in the
range of T�2 to T1, corresponding to a correlation time of 10�5 s and
greater [1,2]. The method has been successfully applied to study
structure and dynamics in a wide range of systems of interest in
polymer and chemical physics, biophysics and materials science.
Two of the earliest works in the field that implemented the ap-
proach involved a study of molecular dynamics in liquid crystals
[3] and motional constraints in polyethylene [1,2]. The approach
has been used to study slow tetrahedral jumps in solid hexameth-
ylenetetramine [4], the dynamics of gramicidin [5], to investigate
the localized dynamics in DNA fragments [6], and more recently
hydration dependent dynamics in RNA [7].

The pulse sequence for generating and detecting quadrupolar
order consists of three pulses with shifted phases as shown in
Fig. 1. Quadrupolar order is excited by the second pulse, evolves
during the delay T and is subsequently converted into an observa-
ble signal by the last pulse. By varying T, the relaxation time of
quadrupolar order, T1Q, can be measured. This pulse sequence
intrinsically generates quadrupolar order and double quantum
ll rights reserved.

outis).
coherence at the same time even under ideal experimental condi-
tions [3]. The unwanted double quantum coherence can be readily
suppressed from the detected signal by phase cycling [3].

One of the prerequisites for performing T1Q experiments on ri-
gid solids is the use of high RF power to excite the nuclear spin
ensemble bandwidth, which may exceed 100 kHz. The use of high
RF power inevitably introduces a variety of pulse artifacts, such as
phase transients. Other unavoidable experimental errors include a
flip angle error, finite pulse width effect and off-resonance artifact.
It is well known from the coherence pathway formalism, that per-
fect spin rotations as well as the pulse and receiver phase are cru-
cial for the selection of certain orders of quantum coherence [8].
Jerschow has reported on a spherical tensor based formalism that
quantifies the effects of imperfect rotations when selecting a quan-
tum coherence of interest [9]. In this work, we studied the effects
of pulse errors on the alignment echo three-pulse sequence via the
fictitious spin-1

2 operators developed by Vega and Pines [10]. For
the case that only one quadrupolar frequency, xQ, is present in
the spin ensemble (as is the case for a single crystal, for example),
we investigated the potential leakage of multiple quantum coher-
ence due to pulse errors. The results show that a simple four-step
phase cycling scheme is robust for selecting quadrupolar order if
the errors are small, though the signal intensity may be reduced.
For the case of a powder distribution of xQ, we simulated the
quadrupolar alignment echo spectra and demonstrated that finite
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Fig. 1. A three pulse sequence for generating and detecting quadrupolar order. In
the figure, the phases /1, /2, /3 and /r refer to the RF phases and receiver phase
tabulated in Table 1.

Table 1
A four-step phase cycling scheme for suppressing double quantum coherence in
quadrupolar alignment echo spectroscopy [3]. The phases /1, /2, /3 and /r refer to the
three pulses and receiver phase in the pulse sequence shown in Fig. 1.

Step no. /1 /2 /3 /r

1 x y y y
2 x y �y �y
3 �y x y y
4 �y x �y �y
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pulse width effects, phase transients and pulse flip errors all distort
the powder line shape but that the distortions may be minimized
to some degree by a judicious choice of spacing between the first
two pulses. Lastly, we highlight experimental data on perdeuterat-
ed hexamethylbenzene and polyethylene that demonstrate the
effectiveness of a simple four-step phase cycling scheme that
was investigated. It is suggested that one perform two experiments
with two different phase cycles to verify that the short time behav-
ior of the quadrupolar alignment relaxation data does not include
accidentally leaked double quantum coherence.

2. Case I: Theoretical treatment for the case of a single
quadrupolar frequency

The fictitious spin-1
2 operators were introduced by Vega and

Pines to conveniently describe the interaction of a spin I = 1 nu-
cleus with a Radio Frequency (RF) field [10]. In this formalism,
the basis consists of nine operators given by

Ix;1 ¼
1
2

Ix; Ix;2 ¼
1
2
ðIyIz þ IzIyÞ; Ix;3 ¼

1
2

I2
z � I2

y

� �
Iy;1 ¼

1
2

Iy; Iy;2 ¼
1
2
ðIzIx þ IxIzÞ; Iy;3 ¼

1
2

I2
x � I2

z

� �
Iz;1 ¼

1
2

Iz; Iz;2 ¼
1
2
ðIxIy þ IyIxÞ; Iz;3 ¼

1
2

I2
y � I2

x

� �
ð1Þ

From these definitions the various orders of multiple quantum
coherence are as follows

Ix;1; Iy;1; Ix;2; Iy;2 :single quantum
Ix;3; Iy;3 :quadrupolar order and

double quantum
Ix;3 þ Iy;3 ¼ �Iz;3; Iz;2 :double quantum

Iz;1 :Zeeman order
Ix;3 � Iy;3 :quadrupolar order

In the following, we express the density operator by the above fic-
titious spin-1

2 operators and assume an ensemble of spin I = 1 nuclei
in a large, static magnetic field. In this situation, the spin system is
subject to the secular part of the first order quadrupolar interaction
as well as a possible resonance offset. In the rotating frame the
Hamiltonian is

H ¼ HRF þ Hint ð2Þ

with

Hint ¼ �DIz þ
1
3
xQ ½3IzIz � IðI þ 1Þ�

¼ �2DIz;1 þ
2
3
xQ ðIx;3 � Iy;3Þ ð3Þ

xQ ¼
3e2qQ

4Ið2I � 1Þ�h
½3 cos2 h� 1þ g sin2 h cos 2u�

2
ð4Þ
where D is the resonance offset, e2qQ/h is the quadrupolar coupling
constant, g is the asymmetry parameter and h and u are the usual
Euler angles with respect to the azimuthal axis [11]. We will use the
notation xQ,0 to distinguish with xQ

xQ ;0 ¼
3e2qQ

4Ið2I � 1Þ�h ð5Þ

which is half the observed splitting of a single crystal doublet when
h = 0, or equal to the distance between the peaks in a Pake pattern
when g = 0. Neglecting relaxation processes the time evolution of
the density matrix is

qðtÞ ¼ Uqð0ÞU�1 ð6Þ

with

U ¼ expð�iHtÞ ð7Þ

where H is time independent. In what follows, the initial density
matrix q(0) is taken as q(0) = Iz. The observable signal is determined
by computing

Sig ¼ Trðq � R�yÞ ð8Þ

where the operator for the receiver, R±y, is defined as
R± � ±Iy,1 � iIx,1.

Before highlighting the effects of various errors on the align-
ment echo three-pulse sequence, we will show that the phase cy-
cling scheme given in Table 1 (from reference [3]) eliminates
double quantum coherence under ideal experimental conditions.
In Table 1, /i and /r represent the phases of the ith pulse and recei-
ver, respectively. In the discussion that follows, qn(t) represents
the density operator for the nth step of the phase cycle given in Ta-
ble 1. For ideal experimental conditions we assume the experiment
is performed on-resonance, thus D = 0 in Eq. (3). The propagator for
an RF pulse with flip angle b and phase / according to Eq. (7) is

URFðb;/Þ ¼ expð�ib2I/Þ ð9Þ

where b = p/2 for the first pulse and b = p/4 for the second and last
pulses. The factor of 2 in the spin rotation propagator comes from
the definition of the fictitious spin-1

2 operators. For the computa-
tions that follow we assume s ¼ p

2xQ
for maximum conversion to

quadrupolar order and will expand on this assumption in the pro-
ceeding section. By using Eqs. (3), (6), (7) and (9) the various states
of the spin system at t = s + T� for each step of the four-step phase
cycling are

q1;2ðsþ T�Þ ¼ QðIx;3 � Iy;3Þ=2þ DðIy;3 þ Ix;3Þ=2 ð10aÞ
q3;4ðsþ T�Þ ¼ QðIx;3 � Iy;3Þ=2� DðIx;3 þ Iy;3Þ=2 ð10bÞ

In the above expressions, Q = D = 1. The symbols Q and D have been
inserted as coefficients to label the quadrupolar ordered term and
double quantum coherence terms respectively. These labels show
the presence and magnitude of different quantum coherence cre-
ated after the second delay T, and will be used to track their evolu-
tion into detectable signals in the remaining steps of the pulse
sequence. It is important to note that the pulse sequence even in
the absence of artifacts creates double quantum coherence. Follow-



Fig. 2. Absolute value of the alignment echo intensity at t = 2s + T with errors (S)
divided by the signal intensity without errors (S0) as a function of the pulse flip
error measured in degrees, d90.
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ing the last pulse, the signals at 2s + T for each step of the phase cy-
cle are

Sig1;2ð2sþ TÞ ¼ 1=8ð�D� 3QÞ ð11aÞ
Sig3;4ð2sþ TÞ ¼ 1=8ðD� 3QÞ ð11bÞ

In the above expressions the superscripts denote each step of the
phase cycle in Table 1. The signal after phase cycling is thus

Sigð2sþ TÞ ¼
X4

i¼1

Sigið2sþ TÞ ¼ ð�3=2ÞQ ð12Þ

The result of this computation demonstrates that the four-step
phase cycling scheme given in Table 1 cancels double quantum
coherence entirely and that the detected signal results only from
the quadrupolar ordered state. In the four subsections below we de-
scribe the effect of various pulse errors as well as off-resonance ef-
fects. It will be shown that these errors may introduce extra terms,
such as single quantum coherence and Zeeman order in the inter-
mittent states. Without proper phase cycling, some of these terms
may be transformed into an observable signal. However, with the
four-step phase cycling scheme given in Table 1, to a good approx-
imation, all terms other than quadrupolar order are suppressed in
the detected signal. For the case of a flip error, finite pulse width ef-
fect and pulse transient we assume an on-resonance condition with
D = 0 in Eq. (3).

2.1. Flip error

For the case of a pulse flip error, where the flip angle of any gi-
ven pulse deviates from a perfect rotation, we study the possible
leakage of various multiple quanta in the detected signal. The
propagator for the RF pulse with a flip error is modeled as

URFðb;/; dbÞ ¼ exp½�iðbþ dbÞ2I/� ð13Þ

In the above expression db is the flip error for a pulse with flip angle
b. For the p/4 pulses the error d45 is taken to be half of that of the p/
2 pulse, d90. The phase of each pulse in the cycle, /, is again listed in
Table 1. Using this model and the procedure described above, the
various states of the spin system at time s + T� for each step of
the phase cycling are

q1;2ðsþ T�Þ ¼
Iy;3 � Ix;3

2
Q þ Iy;3 þ Ix;3

2
D� Iz;1Z � Iy;2S4

� Iy;1S3 � Ix;1S1 � Ix;2S2 ð14aÞ

q3;4ðsþ T�Þ ¼ �
Ix;3 � Iy;3

2
Q � Ix;3 þ Iy;3

2
D� Iz;1Z þ Ix;2S4

� Ix;1S3 þ Iy;1S1 � Iy;2S2 ð14bÞ

where

Q ¼ D ¼ cos2ðd90Þ

Z ¼ cos
1
4
ðpþ 2d90Þ

S1 ¼ cosðTxQ Þ sin d90 sin
1
4
ðpþ 2d90Þ

S2 ¼ sinðTxQ Þ sin d90 sin
1
4
ðpþ 2d90Þ

S3 ¼
1
2

sinðTxQ Þ sin 2d90

S4 ¼
1
2

cosðTxQ Þ sin 2d90

ð15Þ

In the above expressions Q denotes quadrupolar order, D denotes
double quantum coherence, Z denotes Zeeman order, and S1, S2,
S3, S4 all denote single quantum coherence. Following the third
pulse the signals detected at t = T + 2s for each step of the phase cy-
cling are

Sig1ð2sþ TÞ ¼ 1
8
�ðDþ 3QÞ cosðd90Þ � 4iS2 cos

1
4
ðpþ 2d90Þ

�
þ4S4 sinðd90Þ�

Sig2ð2sþ TÞ ¼ 1
8
�ðDþ 3QÞ cosðd90Þ þ 4iS2 cos

1
4
ðpþ 2d90Þ

�
�4S4 sinðd90Þ�

Sig3ð2sþ TÞ ¼ 1
8
ðD� 3QÞ cosðd90Þ þ 4iS4 cos

1
4
ðpþ 2d90Þ

�
þ4S2 sinðd90Þ�

Sig4ð2sþ TÞ ¼ 1
8
ðD� 3QÞ cosðd90Þ � 4iS4 cos

1
4
ðpþ 2d90Þ

�
�4S2 sinðd90Þ�

ð16Þ

and the signal after phase cycling is

Sigð2sþ TÞ ¼
X4

i¼1

Sigið2sþ TÞ ¼ �3
2

Q cos d90 ð17Þ

From the above expressions it is clear that Zeeman order (labeled by
Z) which appears at time t = s + T� in Eqs. (14a) and (14b) does not
contribute to the phase cycled signal in Eq. (17); the first two steps
of the phase cycling are able to cancel single quantum coherence
(labeled S2 and S4). Together with the last two steps of the phase cy-
cling scheme, double quantum coherence (labeled D) is also can-
celed. The only term which is created and detected is the
quadrupolar ordered term (labeled Q). Thus, the computation shows
that even in the presence of a pulse flip error there is no leakage of
quantum coherence and one only detects quadrupolar order after
phase cycling. The final detected signal is real and is amplitude
modulated by cos3(d90). Note that when the error d90 = 0 we find
that the results agree with the situation of no error, given in
Eq. (12). The signal intensity as a function of the p/2 flip angle error,
d90, in the range of 0–10� is plotted in Fig. 2. The figure shows that
the relative reduction of the signal intensity is less then 5% when
the flip error is as large as 10�. The pulse flip error may be experi-
mentally measured by a flip–flip sequence [12].



Fig. 3. Absolute value of the alignment echo intensity at t = 2s + T with errors (S)
divided by the signal intensity without errors (S0) as a function of the p/2 pulse
width tp in units of ls for four values of the quadrupolar frequency xQ. The notation
in the figure is as follows: solid line xQ/2p = 2 kHz, dashed line xQ/2p = 10 kHz,
dotdashed line xQ/2p = 15 kHz and dotted line xQ/2p = 20 kHz.
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2.2. Finite pulse width effects

In the situation of a rigid solid, the quadrupolar coupling con-
stant for the deuteron can be as large as 200 kHz and therefore
the evolution under the quadrupolar interaction during the RF
pulses cannot be ignored. The propagator for an RF pulse of width
tp thus includes the quadrupolar interaction,

URFðb;/; tpÞ ¼ exp½�iðb2I/ þ HinttpÞ� ð18Þ

In the following we assume that xQtp is a small quantity. This
assumption is justified under the conditions where the p/2 pulse
width tp is on the order of 1 to 3 ls, and the quadrupolar frequency
xQ/2p is less than 20 kHz, so that xQtp 6 0.12p < p/2. We have per-
formed a Taylor expansion of the solution to second order of this
small quantity to simplify the complex algebraic expressions and
give insight into the dynamics of the spin system in the presence
of this error. Following the evolution under the sequence of pulses
and delays shown in Fig. 1, one obtains the following density matri-
ces before the last pulse for each step of the phase cycle

q1;2ðsþ T�Þ ¼ �Ix;1S1 þ Ix;2S2 þ Iy;1S3 � Iy;2S4 þ Iz;1Z1

� Iz;2D2 �
Iy;3 � Ix;3

2
Q � Iy;3 þ Ix;3

2
D1 ð19aÞ

q3;4ðsþ T�Þ ¼ Iy;1S1 þ Iy;2S2 þ Ix;1S3 þ Ix;2S4 þ Iz;1Z1 þ Iz;2D2

þ Ix;3 � Iy;3

2
Q þ Ix;3 þ Iy;3

2
D1 ð19bÞ

where

Q ¼ D1 ¼
�8p2 þ ð8þ pð4þ pÞÞx2

Q t2
p

8p2

D2 ¼
xQ tpffiffiffi

2
p

p

Z1 ¼
x2

Q t2
pffiffiffi

2
p

p2

S1 ¼
xQ tp sinðTxQ Þffiffiffi

2
p

p

S2 ¼
xQ tp cosðTxQ Þffiffiffi

2
p

p

S3 ¼
4pð2þ pÞxQ tp cosðTxQ Þ � 6px2

Q t2
p sinðTxQ Þ

8p2

S4 ¼
6px2

Q t2
p cosðTxQ Þ þ 4pð2þ pÞxQ tp sinðTxQ Þ

8p2

ð20Þ

Again, the symbols Q and D1 indicate the magnitude of quadrupolar
order and double quantum coherence respectively, S1, S2, S3 and S4

denote single quantum coherence and Z1 denotes Zeeman order. In
addition, the term D2 is a second double quantum coherence term
created due to finite pulse width effects.

Upon implementing the four-step phase cycling scheme again
given in Table 1, the detected signal at t = 2s + T is given by

Sigð2sþ TÞ ¼ Tr
X4

i¼1

qiðT þ 2sÞ � Ri

 !

	 1
4

i
ffiffiffi
2
p

xQ Z1tp þ Q 6�
3x2

Q t2
p

p2

 !" #

	 3
16
�8þ

12þ 4pþ p2
� �

ðxQ tpÞ2

p2

" #
ð21Þ

The result shows that when finite pulse widths are taken into ac-
count the detected signal contains Zeeman order as well as quadru-
polar order. However, the Zeeman order contribution to the signal
intensity is cubic in tp and can be ignored to second order. The
quadrupolar order contribution to the signal intensity decreases
as the pulse width increases, and is plotted in Fig. 3 as a function
of the pulse width tp for several values of the quadrupolar frequency
xQ/2p from 2 kHz to 20 kHz. The figure highlights that the relative
reduction of the signal intensity is less than 5% for the largest value
of xQtp we considered, xQ tp/2p = 0.06.

2.3. Anti-symmetric transients

In this section we model the effects of RF transients. In a previ-
ous work [13], we adopted a model after A. J. Vega [14], where any
RF pulse of our pulse sequence includes a transient effect. The
model consists of an orthogonal RF field that is applied to the spin
system before and after the main pulse. The propagator for an anti-
symmetric pulse transient is given by

URFðb;/;atÞ ¼ exp �iat2It
/þp=2

� �

 expð�ib2I/Þ


 exp iat2It
/þp=2

� �
ð22Þ

where the first and last propagators represent a pulse transient that
rotate the ensemble by an angle at and have phases orthogonal to
that of the main pulse. For example, if the main pulse is about the
x-axis then the transient is about the + y-axis before and - y-axis
after the pulse. We performed a computation that accounts for
pulse transients on all pulses in the spin alignment sequence,
assuming that the transient flip angle at is the same for all pulses.
Because at will typically be small relative to the main pulse dura-
tion we have taken a Taylor expansion to second order in our den-
sity matrix calculation. The states of the spin system before the last
pulse for each step of the phase cycling are

q1;2ðsþ T�Þ ¼ Ix;1S1 þ Ix;2S2 þ Iy;1S3 þ Iy;2S4 þ Iz;1Z1 � Iz;2D2

� Iy;3 � Ix;3

2
Q þ Iy;3 þ Ix;3

2
D1 ð23aÞ

q3;4ðsþ T�Þ ¼ �Iy;1S1 þ Iy;2S2 þ Ix;1S3 � Ix;2S4 þ Iz;1Z1

þ Iz;2D2 þ
Ix;3 � Iy;3

2
Q � Ix;3 þ Iy;3

2
D1 ð23bÞ
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where

Q ¼ a2
t � 1

D1 ¼ 1� 3a2
t

D2 ¼
ffiffiffi
2
p

at

Z1 ¼
a2

tffiffiffi
2
p

S1 ¼
1
2

ffiffiffi
2
p

a2
t cosðTxQ Þ þ 2at sinðTxQ Þ

� �
S2 ¼

1
2
�2at cosðTxQ Þ þ

ffiffiffi
2
p

a2
t sinðTxQ Þ

� �
S3 ¼ �1þ

ffiffiffi
2
p� �

a2
t sinðTxQ Þ

S4 ¼ �1þ
ffiffiffi
2
p� �

a2
t cosðTxQ Þ

ð24Þ

The notation again for the various symbols Q, D1, S1,S2, S3, S4 and Z1,
D2 are the same as those in the previous section on finite pulse er-
rors. The computation shows the creation of single quantum coher-
ence, double quantum coherence and Zeeman order in addition to
the quadrupolar order terms resulting from RF transients. After
implementing the four-step phase cycling one obtains the following
expression for the signal at t = 2s + T

Sigð2sþ TÞ ¼ Tr
X4

i¼1

qiðT þ 2sÞ � Ri

 !

	 3
4

Q 2� 2i �1þ
ffiffiffi
2
p� �

at þ �3þ 2
ffiffiffi
2
p� �

a2
t

h i
	 �3

2
þ 3

2
i �1þ

ffiffiffi
2
p� �

at þ
15
4
� 3ffiffiffi

2
p

� 	
a2

t ð25Þ

The result shows that the detected signal in the presence of RF tran-
sients arises only from the quadrupolar ordered state. However, the
detected signal contains both real and imaginary components
whose individual amplitudes depend on the transient flip angle
at. The real part and the magnitude of the complex signal as func-
tions of at in the range of 0–30� are plotted in Fig. 4. When the flip
angle of the RF transient is as large as 30� the signal intensity on the
real channel reduces to approximately 70%, and the magnitude of
the complex signal reduces to approximately 75% of the signal
intensity under ideal conditions. Experimentally RF transients
may be characterized by a flip–flop sequence by measuring the
modulation frequency induced by the transient [12,15]. From aver-
age Hamiltonian theory, the first order term of Magnus expansion
for our transient model in the flip-flop sequence is

H0
T ¼ J1=scðIz;1 � Iy;1Þ ð26Þ

where sc is cycle time of the multiple pulse sequence and the mod-
ulation induced by the RF transient in a stroboscopic measurement
is given by [13]

x ¼ �
ffiffiffi
2
p

J1=sc: ð27Þ

The relation between J1 and the transient flip angle at in our model
is

J1 ¼ �at ð28Þ
Fig. 4. Absolute value of the alignment echo intensity at t = 2s + T with errors (S)
divided by the signal intensity without errors (S0) as a function of the transient flip
angle at in degrees. The dashed line represents the real component of the signal and
the solid line represents the magnitude of the signal.
2.4. Bz offset

Lastly we consider the case when the internal Hamiltonian has
a nonzero resonance offset, i.e. D – 0 in Eq. (3). We assume the
propagators for the RF pulses are the same as that for the ideal
condition given in Eq. (9). The density matrices at t = s + T� for
the various steps in the phase cycling are
q1;2ðsþ T�Þ ¼ �Ix;2S4 þ Ix;1S3 � Iy;2S2 � Iy;1S1 � Iz;2D2

� Ix;3 � Iy;3

2
Q þ Ix;3 þ Iy;3

2
D1 ð29aÞ

q3;4ðsþ T�Þ ¼ �Iy;2S4 � Iy;1S3 þ Ix;2S2 � Ix;1S1 þ Iz;2D2

� Ix;3 � Iy;3

2
Q � Ix;3 þ Iy;3

2
D1 ð29bÞ

where

Q ¼ cos
pD

2xQ

� 	

D1 ¼ cosð2TDÞ cos
pD

2xQ

� 	
�

ffiffiffi
2
p

sinð2TDÞ sin
pD

2xQ

� 	

D2 ¼
1
2

cos
pD

2xQ

� 	
sinð2TDÞ þ

ffiffiffi
2
p

cosð2TDÞ sin
pD

2xQ

� 	� 


S1 ¼
sinðTxQ Þ sinðTDÞ sin pD

2xQ

� �
ffiffiffi
2
p

S2 ¼
cosðTxQ Þ sinðTDÞ sin pD

2xQ

� �
ffiffiffi
2
p

S3 ¼
cosðTDÞ sinðTxQ Þ sin pD

2xQ

� �
ffiffiffi
2
p

S4 ¼
cosðTxQ Þ cosðTDÞ sin pD

2xQ

� �
ffiffiffi
2
p

ð30Þ

With the four-step phase cycling the final detected signal is

Sigð2sþ TÞ ¼ Tr
X4

i¼1

qiðT þ 2sÞ � Ri

 !
¼ �3

2
e
� ipD

2xQ Q ð32Þ

The above result shows that in the presence of a resonance offset
that the detected signal still only arises from quadrupolar order
with no additional quantum coherence leaked into the detected
signal. There are two observed effects that the resonance offset er-
ror has on the signal; there is a phase and amplitude modulation of
the signal that is proportional to D/xQ. Because the resonance offset



Fig. 5. Absolute value of the alignment echo intensity at t = 2s + T with errors (S)
divided by the signal intensity without errors (S0) as a function of the resonance
offset D for four values of the quadrupolar frequency xQ. The notation in the figure
is as follows: solid line xQ/2p = 2 kHz, dashed line xQ/2p = 10 kHz, dotdashed line
xQ/2p = 15 kHz and dotted line xQ/2p = 20 kHz.
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Fig. 6. Simulated phase cycled alignment echo FID and the corresponding real
component of the spectra for the case of s = 25 ls (other parameters are provided in
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is typically much smaller than the quadrupolar frequency, the effect
on the detected signal is negligible. Fig. 5 highlights the variation in
the amplitude of the signal as a function of the resonance offset for
four different values of quadrupolar frequencies, xQ/2p, from 2 kHz
to 20 kHz. The results show the reduction in signal in the alignment
echo amplitude in the presence of an off-resonance effect as large as
40 Hz is negligible for quadrupolar frequencies xQ/2p = 20 kHz.
the text). (a) Ideal experimental conditions. (b) A flip error with db = 6�. (c) A 90�
pulse of width equal to 1 ls. (d) A 90� pulse of width 2 ls. (e) A 90� pulse of width
3 ls. (f) A pulse transient with flip angle at = 9�. (g) A pulse transient with flip angle
at = 18�.
3. Case II: Simulations of alignment echo powder line shapes in
the presence of pulse errors

In the previous section the analysis was performed for a single
value of xQ and the delay s was set such that s = p/2xQ. Under
these conditions, it is straightforward to show that one achieves
optimal conversion to quadrupolar order under ideal experimental
conditions. For situations where there is more than one quadrupo-
lar frequency, such as in the case of polycrystal or powdered sam-
ples, the above condition cannot be achieved and it is challenging
to obtain analytical expressions for a distribution of xQ. In this sec-
tion, we consider simulation results that illustrate the effects of a
given pulse error on the alignment echo spectra acquired by the
three-pulse sequence. Broadband excitation of quadrupolar spectra
may be achieved by composite pulses and alleviate the stringent
requirement that s = p/2xQ to some extent, but are not the subject
of this work [16–18]. The parameters we used in the simulation are
xQ,0/2p = 64 kHz, g = 0 with s = 25 ls or s = 30 ls. For each value
of s, the spectra for three types of errors were individually investi-
gated. The simulations are performed using a home written algo-
rithm in MATLAB and the error models described in the previous
section. In all of our simulations we considered 360 powder aver-
ages, T = 100 ls, a 350 ls acquisition window and a dwell time of
0.5 ls. The spectra shown in Figs. 6 and 7 are obtained with a
Gaussian broadening of 2 kHz and zero padding the data once.

Figs. 6 and 7 show the simulated FID and spectra for s = 25 ls
and s = 30 ls respectively under various pulse error conditions. It
should be noted that the vertical scale of the spectra shown in
Fig. 6 is half that in Fig. 7. Referring to Fig. 6b one observes that
the effect of a flip error is to introduce an asymmetry into the
spectra. A finite pulse width effect, shown in Fig. 6c–e, in the range
of 1–3 ls reduces the signal intensity and introduces an asymme-
try in the spectra as well. Fig. 6f and g show results for two differ-
ent RF transients. The main effect of an RF transient in addition to
causing an asymmetry distortion is that it introduces some addi-
tional artifacts in the center of the spectra, and as the transient is
made larger this feature becomes more pronounced. With the
introduction of any of the three errors we modeled, an imaginary
component is introduced in the FID.

Fig. 7, highlights results for s = 30 ls; the data demonstrate that
the effects of the various errors appear to be larger than when
s = 25 ls. The effect of a flip error shown in Fig. 7b also introduces
an asymmetry in the spectra, but to a greater extent than that of
Fig. 6b where s = 25 ls. The effect of a finite pulse width, shown
in Fig. 7c–e also distorts the spectra, but to a greater extent than
that shown in the results of Fig. 6c–e. RF transients still result in
a spectral distortion in the center of the spectra, however, the
asymmetry appears to be much greater than the condition when
s = 25 ls shown in Fig. 6f and g. Together, the simulations show
that the spectral distortions due to pulse errors may be minimized,
to some extent, by judiciously choosing the time between the first
two pulses.

An intuitive method of choosing the optimal value of s is to con-
sider the maxima of the functionZ p

0
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2
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� 	

sinðhÞdh ð33Þ
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Fig. 7. Simulated phase cycled alignment echo FID and the corresponding real
component of the spectra for the case of s = 30 ls (other parameters are provided in
the text). (a) Ideal experimental conditions (b) A flip error with db = 6�. (c) A 90�
pulse of width equal to 1 ls. (d) A 90� pulse of width 2 ls. (e) A 90� pulse of width
3 ls. (f) A pulse transient with flip angle at = 9�. (g) A pulse transient with flip angle
at = 18�.

0 25 50 75 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

τ [μs]

Fig. 8. Plot of the function shown in Eq. (33) versus s for the case xQ,0/2p = 64 kHz
and g = 0.
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which is the powder average of the prefactor of the signal intensity,
under ideal conditions. To be clear, the sin2 xQ ;0

3 cos2 h�1
2 s

� �
ampli-

tude modulation arises from the generation and subsequent read-
out of quadrupolar order. A graph of this function is shown in
Fig. 8 for the case xQ,0/2p = 64 kHz. Referring to the figure, it is
evident that the optimal choice for s is approximately 9 ls. Other
than a reduction in signal intensity, the spectra simulated with this
choice of s essentially reproduced that shown for the next maxi-
mum, s = 25 ls. While the shorter s choice may maximize the con-
version to quadrupolar order, this choice may result in additional
distortions in the acquired spectra due to instrumental dead times
and probe ring down effects in experiments. Further, Fig. 8 accounts
for the observation that the signal intensity at s = 30 ls is smaller
than that at s = 25 ls, as the shorter choice in s allows for more effi-
cient conversion of single quantum coherence to quadrupolar align-
ment with the p/4 pulse. In practice one may measure the value of
xQ and g with a solid echo and generate a similar figure for deter-
mining an optimal choice in s.
4. Experimental

We performed a measurement of the quadrupolar alignment
relaxation rate on powdered samples of perdeuterated hexameth-
ylbenzene (HMB) and polyethelene (PE). We measured xQ,0/
2p = 16.1 kHz in the HMB sample and xQ,0/2p = 120.5 kHz in the
PE sample. The 2H NMR signals were obtained at 27.55 MHz, using
a Tecmag Apollo solid state NMR system and a home-built NMR
probe. The pulse length was 2.8 ls for the p/2 pulse with s set to
35 ls in all our experiments. In signal averaging, 80 scans were
accumulated for the HMB sample and 1000 scans were accumu-
lated for the PE sample with a recycle delay of 2 s. All the experi-
ments were performed at room temperature. In order to probe
the effectiveness of the suppression of double quantum coherence
we implemented the four-step phase cycling scheme in Table 1 as
well as a two step phase cycling scheme consisting of the first two
steps in Table 1; the later scheme suppresses single quantum
coherence but not double quantum coherence. The integrated
spectral intensity as a function of the delay T are shown in Fig. 9
for HMB and Fig. 10 for PE, on a logarithmic scale to reveal the de-
tails of the short time behavior. The purpose of the experimental
data presented is to demonstrate the efficacy of the four-step
phase cycling scheme under real experimental conditions and ver-
ify some of the results of our analysis.

Data for the HBM sample using the two-step phase cycling
scheme was fitted by two exponentials, shown as the solid line
through the triangle points, with time constants 57.5 ms and
0.5 ms. The four-step phase cycled data, however, is well fit by a
single exponential and the fit is shown as the solid line through
the circle points, with a time constant of 57.5 ms. It is clear that
the 0.5 ms fast decay component from the two-step phase cycling
scheme is double quantum coherence. The absence of other com-
ponents needed to fit both data sets suggest that there is no single
quantum coherence or Zeeman order leakage under our experi-
mental conditions. Furthermore, the four-step phase cycled data
indicate that there is no double quantum coherence or other terms
that are leaked into the detected signal other than the quadrupolar
ordered state by using this scheme. Experimental data acquired on
PE are highlighted in Fig. 10 and demonstrate similar results as
that found on HMB. Data acquired with two step phase cycling
scheme are shown as triangle points; the fit shown as a solid line
includes three time constants: 147.7 ms, 3.8 ms and 0.09 ms. Using
the four step phase cycling scheme we observe only two time con-
stants: 147.7 ms and 3.8 ms. The double quantum signal that has a
decay time constant of 0.09 ms observed in the two step phase cy-
cling experiment is suppressed in the four step phase cycling
experiment. It is evident that the pulse phase cycling scheme is
also robust for this sample that has a quadrupolar frequency
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Fig. 9. Results from relaxation measurements shown on a logarithmic scale (in
time) for two different phase cycling schemes in powdered perdeuterated hexa-
methylbenzene. As discussed in the text, the two step phase cycling scheme allows
for detection of double quantum coherence simultaneously with the quadrupolar
alignment signal. The four-step phase cycling scheme suppresses double quantum
coherence and allows for detecting the quadrupolar alignment signal only, in the
absence of experimental artifacts. In the figure the experimental data are shown as
open points and the best fits are shown as solid lines. The error bars are
approximately 4%.

Fig. 10. Results from relaxation measurements shown on a logarithmic scale (in
time) for two different phase cycling schemes in deuterated polyethylene. As
discussed in the text, the two step phase cycling scheme allows for detection of
double quantum coherence simultaneously with the quadrupolar alignment signal.
The four-step phase cycling scheme suppresses double quantum coherence and
allows for detecting the quadrupolar alignment signal only, in the absence of
experimental artifacts. In the figure the experimental data are shown as open points
and the best fits are shown as solid lines. The error bars are approximately 4%.
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approximately 7.4 times larger than the HMB sample. The bi-expo-
nential decay in the spin alignment echo experiment of PE has
been previously studied by Speiss and coworkers, and is attributed
to ’rigid’ and ’mobile’ deuterons in crystalline and amorphous re-
gions of the polymer [19]. In our experimental setup, we estimated
the pulse flip errors and transients with flip-flip and flip-flop pulse
sequences [12]. The flip error for the 90� pulse in our system was
determined to be approximately 3.5� and the pulse transient flip
angle was determined to be approximately 11�. While an 11� de-
gree phase transient is within the limits of our Taylor expansion
computed in the previous section, we found that the phase cycling
scheme was robust in suppressing unwanted double quantum
coherence. While the pulse flip error was 3.5�, the analysis showed
that the four-step phase cycling scheme is also robust against this
error and suppresses unwanted double quantum coherence when
xQs = p/2. Finally, in our experimental setup xQtp� p/2, so no
double quantum or single quantum or Zeeman order leakage is ex-
pected to be realized, when xQs = p/2. We note that the experi-
mental artifacts commonly encountered in other systems may be
greater than that found on our system, and it behooves the exper-
imenter to consider running two separate experiments with two
separate phase cycles to verify that the short time decay in T1Q

experiments is indeed quadrupolar order.
5. Conclusion

In this work we report on the effects of a variety of experimen-
tal imperfections on spin I = 1 quadrupolar alignment echo spec-
troscopy. We studied the potential leakage of unwanted
quantum coherence as well as the reduction in signal intensity
for four different types of commonly encountered experimental
artifacts. For the case of a single quadrupolar frequency (in the case
of a single crystal), the findings indicate that by implementing a
well known four-step phase cycling scheme that pulse flip errors,
finite pulse width effects, RF transients and off-resonance effects
will not introduce unwanted quantum coherences. Off-resonance
effects have the smallest effect and are negligible in many rigid
or semi-rigid solids. Pulse flip errors and RF transients reduce the
signal intensity for typical experimental errors to a similar extent.
Finite pulse width effects may have substantial effects if the quad-
rupolar interaction is large, resulting in a reduction in signal inten-
sity comparable in magnitude to the effects of the pulse flip errors
and transients. We studied the various artifacts that may arise in
the situation of a powder distribution, via simulation. The artifacts
associated with the pulse errors may be minimized to some extent
by a judicious choice in s, where single quantum coherence is max-
imally converted to quadrupolar order. Lastly, it is demonstrated
experimentally that the potential leakage of double quantum
coherence in the short time decay of quadrupolar alignment relax-
ation studies may be probed by performing two separate experi-
ments; one cycle that intentionally allows for detecting the
double quantum signal and a second cycle that only allows for
detecting quadrupolar order.
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